A~theorem on $M$-matrices and its extensions
Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 235-246
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider a useful condition for the positivity of the principal minors of a real matrix with nonnegative elements off the diagonal. This condition is useful for proving the convexity of certain sets in $n$-dimensional space, naturally connected with such matrices. Our result also yields a condition for the nonsingularity of a matrix with arbitrary (complex) elements, unifying conditions of Hadamard and Fidler.
@article{MZM_1973_13_2_a7,
author = {V. L. Stefanyuk},
title = {A~theorem on $M$-matrices and its extensions},
journal = {Matemati\v{c}eskie zametki},
pages = {235--246},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a7/}
}
V. L. Stefanyuk. A~theorem on $M$-matrices and its extensions. Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 235-246. http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a7/