A~theorem on $M$-matrices and its extensions
Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 235-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a useful condition for the positivity of the principal minors of a real matrix with nonnegative elements off the diagonal. This condition is useful for proving the convexity of certain sets in $n$-dimensional space, naturally connected with such matrices. Our result also yields a condition for the nonsingularity of a matrix with arbitrary (complex) elements, unifying conditions of Hadamard and Fidler.
@article{MZM_1973_13_2_a7,
     author = {V. L. Stefanyuk},
     title = {A~theorem on $M$-matrices and its extensions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {235--246},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a7/}
}
TY  - JOUR
AU  - V. L. Stefanyuk
TI  - A~theorem on $M$-matrices and its extensions
JO  - Matematičeskie zametki
PY  - 1973
SP  - 235
EP  - 246
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a7/
LA  - ru
ID  - MZM_1973_13_2_a7
ER  - 
%0 Journal Article
%A V. L. Stefanyuk
%T A~theorem on $M$-matrices and its extensions
%J Matematičeskie zametki
%D 1973
%P 235-246
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a7/
%G ru
%F MZM_1973_13_2_a7
V. L. Stefanyuk. A~theorem on $M$-matrices and its extensions. Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 235-246. http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a7/