An integral basis of algebraic fields
Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 229-234
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $A$ be a principal ideal domain, $K$ be the quotient field of $A$, and let $L$ be a cubic extension of $K$. In this paper we establish the existence of a special type of integral basis of the field $L$ over $K$ which is a generalization of the integral basis of Voronoi for cubic extensions of the field $Q$ of rational numbers.
@article{MZM_1973_13_2_a6,
author = {\`E. A. Sergeev},
title = {An integral basis of algebraic fields},
journal = {Matemati\v{c}eskie zametki},
pages = {229--234},
year = {1973},
volume = {13},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a6/}
}
È. A. Sergeev. An integral basis of algebraic fields. Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 229-234. http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a6/