An integral basis of algebraic fields
Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 229-234.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a principal ideal domain, $K$ be the quotient field of $A$, and let $L$ be a cubic extension of $K$. In this paper we establish the existence of a special type of integral basis of the field $L$ over $K$ which is a generalization of the integral basis of Voronoi for cubic extensions of the field $Q$ of rational numbers.
@article{MZM_1973_13_2_a6,
     author = {\`E. A. Sergeev},
     title = {An integral basis of algebraic fields},
     journal = {Matemati\v{c}eskie zametki},
     pages = {229--234},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a6/}
}
TY  - JOUR
AU  - È. A. Sergeev
TI  - An integral basis of algebraic fields
JO  - Matematičeskie zametki
PY  - 1973
SP  - 229
EP  - 234
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a6/
LA  - ru
ID  - MZM_1973_13_2_a6
ER  - 
%0 Journal Article
%A È. A. Sergeev
%T An integral basis of algebraic fields
%J Matematičeskie zametki
%D 1973
%P 229-234
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a6/
%G ru
%F MZM_1973_13_2_a6
È. A. Sergeev. An integral basis of algebraic fields. Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 229-234. http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a6/