Functions of bounded $p$-variation with given order of modulus of $p$-continuity
Matematičeskie zametki, Tome 12 (1972) no. 5, pp. 523-530.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct continuous functions for which the modulus of $p$-continuity tends to zero with given order in Wiener's sense $$ V^p(\delta;f)=\sup\sum_i|f(x_i)-f(x_{i-1})|^p\qquad(p>1) $$ (the upper bound is taken over partitions satisfying the condition $x_i-x_{i-1}\leqslant\delta$).
@article{MZM_1972_12_5_a3,
     author = {A. P. Terekhin},
     title = {Functions of bounded $p$-variation with given order of modulus of $p$-continuity},
     journal = {Matemati\v{c}eskie zametki},
     pages = {523--530},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a3/}
}
TY  - JOUR
AU  - A. P. Terekhin
TI  - Functions of bounded $p$-variation with given order of modulus of $p$-continuity
JO  - Matematičeskie zametki
PY  - 1972
SP  - 523
EP  - 530
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a3/
LA  - ru
ID  - MZM_1972_12_5_a3
ER  - 
%0 Journal Article
%A A. P. Terekhin
%T Functions of bounded $p$-variation with given order of modulus of $p$-continuity
%J Matematičeskie zametki
%D 1972
%P 523-530
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a3/
%G ru
%F MZM_1972_12_5_a3
A. P. Terekhin. Functions of bounded $p$-variation with given order of modulus of $p$-continuity. Matematičeskie zametki, Tome 12 (1972) no. 5, pp. 523-530. http://geodesic.mathdoc.fr/item/MZM_1972_12_5_a3/