An example of a second-order nonhypoelliptic operator with the property of global hypoellipticity
Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 269-274
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the operator $$ P\equiv-\frac{\partial^2}{\partial x_1^2}-\sum_{k=2}^n\frac{\partial}{\partial x_k}\varphi^2(x)\frac\partial{\partial x_k}, $$ where $\varphi(x)\in C^\infty(\Omega)$ ($\Omega$ is a domain in $\mathbf{R}^n$), $\{x: \varphi(x)=0\}$ is a compactum in $\Omega$ which is the closure of its internal points, has the property of global hypoellipticity in $\Omega$, i.e., $$ v\in D'(\Omega),\qquad Pv\in C^\infty(\Omega)\Longrightarrow v\in C^\infty(\Omega). $$ This operator is not hypoelliptic.
@article{MZM_1972_12_3_a6,
author = {V. S. Fedii},
title = {An example of a second-order nonhypoelliptic operator with the property of global hypoellipticity},
journal = {Matemati\v{c}eskie zametki},
pages = {269--274},
year = {1972},
volume = {12},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a6/}
}
V. S. Fedii. An example of a second-order nonhypoelliptic operator with the property of global hypoellipticity. Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 269-274. http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a6/