An example of a second-order nonhypoelliptic operator with the property of global hypoellipticity
Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 269-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the operator $$ P\equiv-\frac{\partial^2}{\partial x_1^2}-\sum_{k=2}^n\frac{\partial}{\partial x_k}\varphi^2(x)\frac\partial{\partial x_k}, $$ where $\varphi(x)\in C^\infty(\Omega)$ ($\Omega$ is a domain in $\mathbf{R}^n$), $\{x: \varphi(x)=0\}$ is a compactum in $\Omega$ which is the closure of its internal points, has the property of global hypoellipticity in $\Omega$, i.e., $$ v\in D'(\Omega),\qquad Pv\in C^\infty(\Omega)\Longrightarrow v\in C^\infty(\Omega). $$ This operator is not hypoelliptic.
@article{MZM_1972_12_3_a6,
     author = {V. S. Fedii},
     title = {An example of a second-order nonhypoelliptic operator with the property of global hypoellipticity},
     journal = {Matemati\v{c}eskie zametki},
     pages = {269--274},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a6/}
}
TY  - JOUR
AU  - V. S. Fedii
TI  - An example of a second-order nonhypoelliptic operator with the property of global hypoellipticity
JO  - Matematičeskie zametki
PY  - 1972
SP  - 269
EP  - 274
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a6/
LA  - ru
ID  - MZM_1972_12_3_a6
ER  - 
%0 Journal Article
%A V. S. Fedii
%T An example of a second-order nonhypoelliptic operator with the property of global hypoellipticity
%J Matematičeskie zametki
%D 1972
%P 269-274
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a6/
%G ru
%F MZM_1972_12_3_a6
V. S. Fedii. An example of a second-order nonhypoelliptic operator with the property of global hypoellipticity. Matematičeskie zametki, Tome 12 (1972) no. 3, pp. 269-274. http://geodesic.mathdoc.fr/item/MZM_1972_12_3_a6/