A problem of Ulam
Matematičeskie zametki, Tome 12 (1972) no. 2, pp. 155-156
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $R$ be a set of positive integers with usual operations of addition and multiplication $$ a+b=s(a,b);\quad a\cdot b=m(a,b);\quad a,b\in R. $$ A correspondence is set up between each one-to-one (Peano) mapping $p$ of the space $R\times R$ onto the whole of $R$ and the two functions $$ \begin{aligned} \sigma(c)&=\sigma[p(a,b)]=s(a,b);\\ \mu(c)&=\mu[p(a,b)]=m(a,b). \end{aligned} $$ It is proved in this note that there can be no Peano mapping for which $\sigma(\mu(c))=\mu(\sigma(c))$ for all $c$ in $R$.
@article{MZM_1972_12_2_a5,
author = {V. V. Ermakov},
title = {A problem of {Ulam}},
journal = {Matemati\v{c}eskie zametki},
pages = {155--156},
year = {1972},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a5/}
}
V. V. Ermakov. A problem of Ulam. Matematičeskie zametki, Tome 12 (1972) no. 2, pp. 155-156. http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a5/