A problem of Ulam
Matematičeskie zametki, Tome 12 (1972) no. 2, pp. 155-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a set of positive integers with usual operations of addition and multiplication $$ a+b=s(a,b);\quad a\cdot b=m(a,b);\quad a,b\in R. $$ A correspondence is set up between each one-to-one (Peano) mapping $p$ of the space $R\times R$ onto the whole of $R$ and the two functions $$ \begin{aligned} \sigma(c)=\sigma[p(a,b)]=s(a,b);\\ \mu(c)=\mu[p(a,b)]=m(a,b). \end{aligned} $$ It is proved in this note that there can be no Peano mapping for which $\sigma(\mu(c))=\mu(\sigma(c))$ for all $c$ in $R$.
@article{MZM_1972_12_2_a5,
     author = {V. V. Ermakov},
     title = {A problem of {Ulam}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {155--156},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a5/}
}
TY  - JOUR
AU  - V. V. Ermakov
TI  - A problem of Ulam
JO  - Matematičeskie zametki
PY  - 1972
SP  - 155
EP  - 156
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a5/
LA  - ru
ID  - MZM_1972_12_2_a5
ER  - 
%0 Journal Article
%A V. V. Ermakov
%T A problem of Ulam
%J Matematičeskie zametki
%D 1972
%P 155-156
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a5/
%G ru
%F MZM_1972_12_2_a5
V. V. Ermakov. A problem of Ulam. Matematičeskie zametki, Tome 12 (1972) no. 2, pp. 155-156. http://geodesic.mathdoc.fr/item/MZM_1972_12_2_a5/