A property of a system of functions close to exponential functions
Matematičeskie zametki, Tome 12 (1972) no. 1, pp. 29-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the system $\{f_n(x)=x^{\lambda_n}[1+\varepsilon_n(x)]\}$ in the interval $[a,b]$ ($0\leqslant a$). Under certain conditions on $\lambda_n>0$ and $\varepsilon_n(x)$ such as the condition $\varlimsup\limits_{n\to\infty}\frac{\ln m_n}{\lambda_n}>0$, $m_n=||\varepsilon_n(x)||_{L_p[a,b]}$, we obtain a bound for the coefficients of the polynomial $P(x)=\sum c_nf_n(x)$ in terms of $||P(x)||_{L_p[a,b]}$. It is found that this bound is not valid without this condition (assuming the other conditions to remain the same).
@article{MZM_1972_12_1_a3,
     author = {L. A. Leont'eva},
     title = {A property of a system of functions close to exponential functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {29--36},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a3/}
}
TY  - JOUR
AU  - L. A. Leont'eva
TI  - A property of a system of functions close to exponential functions
JO  - Matematičeskie zametki
PY  - 1972
SP  - 29
EP  - 36
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a3/
LA  - ru
ID  - MZM_1972_12_1_a3
ER  - 
%0 Journal Article
%A L. A. Leont'eva
%T A property of a system of functions close to exponential functions
%J Matematičeskie zametki
%D 1972
%P 29-36
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a3/
%G ru
%F MZM_1972_12_1_a3
L. A. Leont'eva. A property of a system of functions close to exponential functions. Matematičeskie zametki, Tome 12 (1972) no. 1, pp. 29-36. http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a3/