Covering convex solids by greater homotheties
Matematičeskie zametki, Tome 12 (1972) no. 1, pp. 85-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a convex solid of Euclidean space $E^n$, with $\operatorname{bd}K$ and $\operatorname{int}K$ being its boundary and interior. The paper solves the problem of the possibility of covering $K$ by sets homothetic to $\operatorname{int}K$, with the ratio of the homotheties being greater than unity and the centers being in $E^n\setminus\operatorname{int}K$, while, should such a covering exist, an estimate is provided of the least cardinality of the family of sets covering $K$.
@article{MZM_1972_12_1_a10,
     author = {P. S. Soltan},
     title = {Covering convex solids by greater homotheties},
     journal = {Matemati\v{c}eskie zametki},
     pages = {85--90},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a10/}
}
TY  - JOUR
AU  - P. S. Soltan
TI  - Covering convex solids by greater homotheties
JO  - Matematičeskie zametki
PY  - 1972
SP  - 85
EP  - 90
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a10/
LA  - ru
ID  - MZM_1972_12_1_a10
ER  - 
%0 Journal Article
%A P. S. Soltan
%T Covering convex solids by greater homotheties
%J Matematičeskie zametki
%D 1972
%P 85-90
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a10/
%G ru
%F MZM_1972_12_1_a10
P. S. Soltan. Covering convex solids by greater homotheties. Matematičeskie zametki, Tome 12 (1972) no. 1, pp. 85-90. http://geodesic.mathdoc.fr/item/MZM_1972_12_1_a10/