On the algorithmic undecidability of $A$-completeness for the boundedly determinate functions
Matematičeskie zametki, Tome 11 (1972) no. 6, pp. 687-697.

Voir la notice de l'article provenant de la source Math-Net.Ru

A functional system $P$ is considered, whose elements are functions realized by the so-called finite automata and known as the boundedly determinate functions (B. D. functions) and whose operations are known as the operations of superposition. The system $\mathfrak{M}$ of B.D. functions is called $A$-complete if, for an arbitrary B. D. function and for every natural number $\tau>0$, we can obtain (with the help of the operations of superposition) a B. D. function coinciding with the given one of all the words of lenth $\tau$ from the B. D. functions of the system $\mathfrak{M}$. The question is: does there exist an algorithm for deciding the $A$-completeness of an arbitrary finite system of B. D. functions? It is shown that such an algorithm does not exist (see [4]).
@article{MZM_1972_11_6_a9,
     author = {V. A. Buevich},
     title = {On the algorithmic undecidability of $A$-completeness for the boundedly determinate functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {687--697},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a9/}
}
TY  - JOUR
AU  - V. A. Buevich
TI  - On the algorithmic undecidability of $A$-completeness for the boundedly determinate functions
JO  - Matematičeskie zametki
PY  - 1972
SP  - 687
EP  - 697
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a9/
LA  - ru
ID  - MZM_1972_11_6_a9
ER  - 
%0 Journal Article
%A V. A. Buevich
%T On the algorithmic undecidability of $A$-completeness for the boundedly determinate functions
%J Matematičeskie zametki
%D 1972
%P 687-697
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a9/
%G ru
%F MZM_1972_11_6_a9
V. A. Buevich. On the algorithmic undecidability of $A$-completeness for the boundedly determinate functions. Matematičeskie zametki, Tome 11 (1972) no. 6, pp. 687-697. http://geodesic.mathdoc.fr/item/MZM_1972_11_6_a9/