Quadrature processes for integrals of Cauchy type
Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 517-526
Voir la notice de l'article provenant de la source Math-Net.Ru
We study questions relating to convergence of the process $$ \int_{-1}^{+1}\rho(t)\frac{f(t)}{t-x}dt\approx\sum_{k=1}^n\alpha_{k,n}(x)f(x_k^{(n)})\qquad(-11), $$ wherein the singular integral is taken in the principal value sense. General conditions for convergence in the class of continuously differentiable functions $f$ are formulated. In the case of the weight function $\rho(t)=(\sqrt{1-t^2})^{-1}$, we investigate, under various assumptions on $f$, the convergence of a specific quadrature process.
@article{MZM_1972_11_5_a5,
author = {D. G. Sanikidze},
title = {Quadrature processes for integrals of {Cauchy} type},
journal = {Matemati\v{c}eskie zametki},
pages = {517--526},
publisher = {mathdoc},
volume = {11},
number = {5},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a5/}
}
D. G. Sanikidze. Quadrature processes for integrals of Cauchy type. Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 517-526. http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a5/