Quadrature processes for integrals of Cauchy type
Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 517-526.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study questions relating to convergence of the process $$ \int_{-1}^{+1}\rho(t)\frac{f(t)}{t-x}dt\approx\sum_{k=1}^n\alpha_{k,n}(x)f(x_k^{(n)})\qquad(-11), $$ wherein the singular integral is taken in the principal value sense. General conditions for convergence in the class of continuously differentiable functions $f$ are formulated. In the case of the weight function $\rho(t)=(\sqrt{1-t^2})^{-1}$, we investigate, under various assumptions on $f$, the convergence of a specific quadrature process.
@article{MZM_1972_11_5_a5,
     author = {D. G. Sanikidze},
     title = {Quadrature processes for integrals of {Cauchy} type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {517--526},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a5/}
}
TY  - JOUR
AU  - D. G. Sanikidze
TI  - Quadrature processes for integrals of Cauchy type
JO  - Matematičeskie zametki
PY  - 1972
SP  - 517
EP  - 526
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a5/
LA  - ru
ID  - MZM_1972_11_5_a5
ER  - 
%0 Journal Article
%A D. G. Sanikidze
%T Quadrature processes for integrals of Cauchy type
%J Matematičeskie zametki
%D 1972
%P 517-526
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a5/
%G ru
%F MZM_1972_11_5_a5
D. G. Sanikidze. Quadrature processes for integrals of Cauchy type. Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 517-526. http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a5/