On a property of functional series
Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 481-490
Cet article a éte moissonné depuis la source Math-Net.Ru
The question of the convergence of functional series everywhere in the segment $[0, 1]$ is considered. Let $F=\{f\}$ be the set of such functions in $[0, 1]$ for each of which there is a transposition of the series $\sum_{k=1}^\infty f_k(x)$, which converges to it everywhere in $[0, 1]$. An example of a series is constructed such that the set $F$ consists just of an identical zero, but $\sum_{k=1}^\infty|f_k(x_0)|=\infty$ ($x_0\in[0,1]$) for any point of the segment $[0, 1]$.
@article{MZM_1972_11_5_a1,
author = {B. S. Kashin},
title = {On a property of functional series},
journal = {Matemati\v{c}eskie zametki},
pages = {481--490},
year = {1972},
volume = {11},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a1/}
}
B. S. Kashin. On a property of functional series. Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 481-490. http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a1/