On a property of functional series
Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 481-490.

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of the convergence of functional series everywhere in the segment $[0, 1]$ is considered. Let $F=\{f\}$ be the set of such functions in $[0, 1]$ for each of which there is a transposition of the series $\sum_{k=1}^\infty f_k(x)$, which converges to it everywhere in $[0, 1]$. An example of a series is constructed such that the set $F$ consists just of an identical zero, but $\sum_{k=1}^\infty|f_k(x_0)|=\infty$ ($x_0\in[0,1]$) for any point of the segment $[0, 1]$.
@article{MZM_1972_11_5_a1,
     author = {B. S. Kashin},
     title = {On a property of functional series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {481--490},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a1/}
}
TY  - JOUR
AU  - B. S. Kashin
TI  - On a property of functional series
JO  - Matematičeskie zametki
PY  - 1972
SP  - 481
EP  - 490
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a1/
LA  - ru
ID  - MZM_1972_11_5_a1
ER  - 
%0 Journal Article
%A B. S. Kashin
%T On a property of functional series
%J Matematičeskie zametki
%D 1972
%P 481-490
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a1/
%G ru
%F MZM_1972_11_5_a1
B. S. Kashin. On a property of functional series. Matematičeskie zametki, Tome 11 (1972) no. 5, pp. 481-490. http://geodesic.mathdoc.fr/item/MZM_1972_11_5_a1/