Isoperimetric inequalities for $p$-conductance
Matematičeskie zametki, Tome 11 (1972) no. 3, pp. 275-282.

Voir la notice de l'article provenant de la source Math-Net.Ru

An $n$-dimensional domain $K$ is considered with boundary $\partial K=K_0\cup K_1\cup K_2$ such that the closure $\overline{K}$ is the image of a cylinder $B=S\times[0,1]$ ($S$ is a closed $(n-1)$-dimensional cell) under a one-one Lipschitz map. For the $p$-conductance of the domain $K$, defined by the equation $$ c_p(K)=\inf_{U(K)}\int_K|\nabla f|^pdx\qquad(p>1), $$ where $U(K)=\{f(x):f\in W_p^1(K)\cap C(\overline{K}), f=1 \text{ на } K_1, f=0 \text{ на } K_0\}$, the isoperimetric inequality $c_p(K)\leqslant V/r^p$ is established. Here $V$ is the $n$-dimensional volume of the domain $K$, $r$ is the shortest distance between $K_0$ and $K_1$, measured in $K$. Equality is achieved on the right cylinder.
@article{MZM_1972_11_3_a5,
     author = {A. L. Fedorov},
     title = {Isoperimetric inequalities for $p$-conductance},
     journal = {Matemati\v{c}eskie zametki},
     pages = {275--282},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_3_a5/}
}
TY  - JOUR
AU  - A. L. Fedorov
TI  - Isoperimetric inequalities for $p$-conductance
JO  - Matematičeskie zametki
PY  - 1972
SP  - 275
EP  - 282
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_3_a5/
LA  - ru
ID  - MZM_1972_11_3_a5
ER  - 
%0 Journal Article
%A A. L. Fedorov
%T Isoperimetric inequalities for $p$-conductance
%J Matematičeskie zametki
%D 1972
%P 275-282
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_3_a5/
%G ru
%F MZM_1972_11_3_a5
A. L. Fedorov. Isoperimetric inequalities for $p$-conductance. Matematičeskie zametki, Tome 11 (1972) no. 3, pp. 275-282. http://geodesic.mathdoc.fr/item/MZM_1972_11_3_a5/