Isoperimetric inequalities for $p$-conductance
Matematičeskie zametki, Tome 11 (1972) no. 3, pp. 275-282
Cet article a éte moissonné depuis la source Math-Net.Ru
An $n$-dimensional domain $K$ is considered with boundary $\partial K=K_0\cup K_1\cup K_2$ such that the closure $\overline{K}$ is the image of a cylinder $B=S\times[0,1]$ ($S$ is a closed $(n-1)$-dimensional cell) under a one-one Lipschitz map. For the $p$-conductance of the domain $K$, defined by the equation $$ c_p(K)=\inf_{U(K)}\int_K|\nabla f|^pdx\qquad(p>1), $$ where $U(K)=\{f(x):f\in W_p^1(K)\cap C(\overline{K}), f=1 \text{ на } K_1, f=0 \text{ на } K_0\}$, the isoperimetric inequality $c_p(K)\leqslant V/r^p$ is established. Here $V$ is the $n$-dimensional volume of the domain $K$, $r$ is the shortest distance between $K_0$ and $K_1$, measured in $K$. Equality is achieved on the right cylinder.
@article{MZM_1972_11_3_a5,
author = {A. L. Fedorov},
title = {Isoperimetric inequalities for $p$-conductance},
journal = {Matemati\v{c}eskie zametki},
pages = {275--282},
year = {1972},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_3_a5/}
}
A. L. Fedorov. Isoperimetric inequalities for $p$-conductance. Matematičeskie zametki, Tome 11 (1972) no. 3, pp. 275-282. http://geodesic.mathdoc.fr/item/MZM_1972_11_3_a5/