The embedding of linearly ordered sets
Matematičeskie zametki, Tome 11 (1972) no. 1, pp. 83-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that if a linearly ordered set $B$ does not contain as subsets sets of order type $\omega_\alpha$ and $\omega_\alpha^*$, then $B$ can be embedded in $2^{\omega_\alpha}$. We construct an example of a set satisfying the above conditions which cannot be embedded in any $2^\beta$ if $\beta\omega_\alpha$. Simultaneously we show that for any ordinal $\alpha$, $2^{\alpha+1}$ cannot be embedded in $2^\alpha$ and that there exists at least $\chi_{\alpha+1}$ distinct dense order types of cardinality $2^{\chi_\alpha}$.
@article{MZM_1972_11_1_a9,
     author = {A. G. Pinus},
     title = {The embedding of linearly ordered sets},
     journal = {Matemati\v{c}eskie zametki},
     pages = {83--88},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a9/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - The embedding of linearly ordered sets
JO  - Matematičeskie zametki
PY  - 1972
SP  - 83
EP  - 88
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a9/
LA  - ru
ID  - MZM_1972_11_1_a9
ER  - 
%0 Journal Article
%A A. G. Pinus
%T The embedding of linearly ordered sets
%J Matematičeskie zametki
%D 1972
%P 83-88
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a9/
%G ru
%F MZM_1972_11_1_a9
A. G. Pinus. The embedding of linearly ordered sets. Matematičeskie zametki, Tome 11 (1972) no. 1, pp. 83-88. http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a9/