The embedding of linearly ordered sets
Matematičeskie zametki, Tome 11 (1972) no. 1, pp. 83-88
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that if a linearly ordered set $B$ does not contain as subsets sets of order type $\omega_\alpha$ and $\omega_\alpha^*$, then $B$ can be embedded in $2^{\omega_\alpha}$. We construct an example of a set satisfying the above conditions which cannot be embedded in any $2^\beta$ if $\beta\omega_\alpha$. Simultaneously we show that for any ordinal $\alpha$, $2^{\alpha+1}$ cannot be embedded in $2^\alpha$ and that there exists at least $\chi_{\alpha+1}$ distinct dense order types of cardinality $2^{\chi_\alpha}$.
@article{MZM_1972_11_1_a9,
author = {A. G. Pinus},
title = {The embedding of linearly ordered sets},
journal = {Matemati\v{c}eskie zametki},
pages = {83--88},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a9/}
}
A. G. Pinus. The embedding of linearly ordered sets. Matematičeskie zametki, Tome 11 (1972) no. 1, pp. 83-88. http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a9/