Linearly ordered rings which are not $o$-epimorphic images of ordered free rings
Matematičeskie zametki, Tome 9 (1971) no. 6, pp. 693-697.

Voir la notice de l'article provenant de la source Math-Net.Ru

A proof is given that not every linearly ordered associative (associative-commutative) ring is the $o$-image of a free associative (associative-commutative) ring for some ordering of the latter. There are also nilpotent linearly ordered rings which are not $o$-epimorphic images of free associative or free associative-commutative $n$-nilpotent rings for $n\ge4$, no matter what ordering is used for the latter.
@article{MZM_1971_9_6_a9,
     author = {O. A. Ivanova},
     title = {Linearly ordered rings which are not $o$-epimorphic images of ordered free rings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {693--697},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a9/}
}
TY  - JOUR
AU  - O. A. Ivanova
TI  - Linearly ordered rings which are not $o$-epimorphic images of ordered free rings
JO  - Matematičeskie zametki
PY  - 1971
SP  - 693
EP  - 697
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a9/
LA  - ru
ID  - MZM_1971_9_6_a9
ER  - 
%0 Journal Article
%A O. A. Ivanova
%T Linearly ordered rings which are not $o$-epimorphic images of ordered free rings
%J Matematičeskie zametki
%D 1971
%P 693-697
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a9/
%G ru
%F MZM_1971_9_6_a9
O. A. Ivanova. Linearly ordered rings which are not $o$-epimorphic images of ordered free rings. Matematičeskie zametki, Tome 9 (1971) no. 6, pp. 693-697. http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a9/