The order of approximation of continuous functions by certain linear means of their Fourier series
Matematičeskie zametki, Tome 9 (1971) no. 6, pp. 617-627
Voir la notice de l'article provenant de la source Math-Net.Ru
The exact order of the quantity $$A_n(\mathfrak M)=\sup_{\Lambda\in\Lambda^*}\sup_{f\in\mathfrak M}\max_x|L_n(f;x;\Lambda)-f(x)|$$ is determined, where $\Lambda^*$ is the class of linear methods of summation of Fourier series $L_n(f;x;\Lambda)$, satisfying $$(n+1)^{p-1}\sum_{k=0}^n|\Delta\lambda_k^{(n)}|^p\leqslant K^*,\quad p>1$$ and $\mathfrak M$ is either the set of continuous functions $H(\omega)$ or $C(F)$. In
@article{MZM_1971_9_6_a1,
author = {V. A. Baskakov},
title = {The order of approximation of continuous functions by certain linear means of their {Fourier} series},
journal = {Matemati\v{c}eskie zametki},
pages = {617--627},
publisher = {mathdoc},
volume = {9},
number = {6},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a1/}
}
TY - JOUR AU - V. A. Baskakov TI - The order of approximation of continuous functions by certain linear means of their Fourier series JO - Matematičeskie zametki PY - 1971 SP - 617 EP - 627 VL - 9 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a1/ LA - ru ID - MZM_1971_9_6_a1 ER -
V. A. Baskakov. The order of approximation of continuous functions by certain linear means of their Fourier series. Matematičeskie zametki, Tome 9 (1971) no. 6, pp. 617-627. http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a1/