A~relation between spline approximation and the problem of the approximation of one class by another
Matematičeskie zametki, Tome 9 (1971) no. 5, pp. 501-510.

Voir la notice de l'article provenant de la source Math-Net.Ru

An investigation of the approximation in $L_q(-\infty,\,\infty)$ of differentiable functions whose $k$-th derivatives belong to $L_p(-\infty,\,\infty)$, by splines $S_m(x)$ with nonfixed nodes, under the extra assumption that the norms in $L_s(-\infty,\infty)$ of their $l$-th derivatives have a common bound. A relation is established with the problem of approximating functions of one class by functions of another class.
@article{MZM_1971_9_5_a3,
     author = {Yu. N. Subbotin},
     title = {A~relation between spline approximation and the problem of the approximation of one class by another},
     journal = {Matemati\v{c}eskie zametki},
     pages = {501--510},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a3/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
TI  - A~relation between spline approximation and the problem of the approximation of one class by another
JO  - Matematičeskie zametki
PY  - 1971
SP  - 501
EP  - 510
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a3/
LA  - ru
ID  - MZM_1971_9_5_a3
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%T A~relation between spline approximation and the problem of the approximation of one class by another
%J Matematičeskie zametki
%D 1971
%P 501-510
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a3/
%G ru
%F MZM_1971_9_5_a3
Yu. N. Subbotin. A~relation between spline approximation and the problem of the approximation of one class by another. Matematičeskie zametki, Tome 9 (1971) no. 5, pp. 501-510. http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a3/