Best approximations in $L_[0,infty)$ of the differentiation operator
Matematičeskie zametki, Tome 9 (1971) no. 5, pp. 477-481.

Voir la notice de l'article provenant de la source Math-Net.Ru

A solution of Stechkin's problem concerning the approximation in $L_[0,infty)$ of the first-order differentiation operator in the class of functions of arbitrary bounded variation; the exact constant in the inequality $\|f'\|\leqslant K(\|f\|\bigvee\limits_0^\infty f')^{1/2}$ is found.
@article{MZM_1971_9_5_a0,
     author = {V. I. Berdyshev},
     title = {Best approximations in $L_[0,infty)$ of the differentiation operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {477--481},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a0/}
}
TY  - JOUR
AU  - V. I. Berdyshev
TI  - Best approximations in $L_[0,infty)$ of the differentiation operator
JO  - Matematičeskie zametki
PY  - 1971
SP  - 477
EP  - 481
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a0/
LA  - ru
ID  - MZM_1971_9_5_a0
ER  - 
%0 Journal Article
%A V. I. Berdyshev
%T Best approximations in $L_[0,infty)$ of the differentiation operator
%J Matematičeskie zametki
%D 1971
%P 477-481
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a0/
%G ru
%F MZM_1971_9_5_a0
V. I. Berdyshev. Best approximations in $L_[0,infty)$ of the differentiation operator. Matematičeskie zametki, Tome 9 (1971) no. 5, pp. 477-481. http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a0/