Best approximations in $L_[0,infty)$ of the differentiation operator
Matematičeskie zametki, Tome 9 (1971) no. 5, pp. 477-481
Cet article a éte moissonné depuis la source Math-Net.Ru
A solution of Stechkin's problem concerning the approximation in $L_[0,infty)$ of the first-order differentiation operator in the class of functions of arbitrary bounded variation; the exact constant in the inequality $\|f'\|\leqslant K(\|f\|\bigvee\limits_0^\infty f')^{1/2}$ is found.
@article{MZM_1971_9_5_a0,
author = {V. I. Berdyshev},
title = {Best approximations in $L_[0,infty)$ of the differentiation operator},
journal = {Matemati\v{c}eskie zametki},
pages = {477--481},
year = {1971},
volume = {9},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a0/}
}
V. I. Berdyshev. Best approximations in $L_[0,infty)$ of the differentiation operator. Matematičeskie zametki, Tome 9 (1971) no. 5, pp. 477-481. http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a0/