A~discreteness criterion for the spectrum of a~quasielliptic operator
Matematičeskie zametki, Tome 9 (1971) no. 4, pp. 391-399.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the spectrum of the operator $$u=\sum_{j=1}^n{(-1)^{m_j}D_j^{2m_j}u+q(x)u},$$ to be discrete, where the mj are arbitrary positive integers such that $\sum_{j=1}^n{\frac1{2m_j}1}$, and $q(x)\ge 1$, it is necessary and sufficient that $\int\limits_K{q(x)dx\to\infty}$ , when the cube $K$ tends to infinity while preserving its dimensions.
@article{MZM_1971_9_4_a3,
     author = {M. G. Gimadislamov},
     title = {A~discreteness criterion for the spectrum of a~quasielliptic operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {391--399},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a3/}
}
TY  - JOUR
AU  - M. G. Gimadislamov
TI  - A~discreteness criterion for the spectrum of a~quasielliptic operator
JO  - Matematičeskie zametki
PY  - 1971
SP  - 391
EP  - 399
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a3/
LA  - ru
ID  - MZM_1971_9_4_a3
ER  - 
%0 Journal Article
%A M. G. Gimadislamov
%T A~discreteness criterion for the spectrum of a~quasielliptic operator
%J Matematičeskie zametki
%D 1971
%P 391-399
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a3/
%G ru
%F MZM_1971_9_4_a3
M. G. Gimadislamov. A~discreteness criterion for the spectrum of a~quasielliptic operator. Matematičeskie zametki, Tome 9 (1971) no. 4, pp. 391-399. http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a3/