Number of nonisomorphic subgraphs in an $n$-point graph
Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 263-273.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{G}(n)$ be the set of all nonoriented graphs with $n$ enumerated points without loops or multiple lines, and let $\nu_k(G)$ be the number of mutually nonisomorphic $k$-point subgraphs of $G\in\mathfrak{G}(n)$. It is proved that at least $|\mathfrak{G}(n)|(1-1/n)$ graphs $G\in\mathfrak{G}(n)$ possess the following properties: a) for any $k\in[6\log_2n, cn+5\log_2n]$, where $c=-c\log_2c-(1-c)\times\log_2(1-c)$ and $c>1/2$, we have $\nu_k(G)>C_n^k(1-1/n^2)$; b) for any $k\in[cn+5\log_2n, n]$ we have $\nu_k(G)=C_n^k$. Hence “almost all” graphs $G\in\mathfrak{G}(n)$ contain $\nu(G)\sim2^n$ pairwise nonisomorphic subgraphs.
@article{MZM_1971_9_3_a4,
     author = {A. D. Korshunov},
     title = {Number of nonisomorphic subgraphs in an $n$-point graph},
     journal = {Matemati\v{c}eskie zametki},
     pages = {263--273},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a4/}
}
TY  - JOUR
AU  - A. D. Korshunov
TI  - Number of nonisomorphic subgraphs in an $n$-point graph
JO  - Matematičeskie zametki
PY  - 1971
SP  - 263
EP  - 273
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a4/
LA  - ru
ID  - MZM_1971_9_3_a4
ER  - 
%0 Journal Article
%A A. D. Korshunov
%T Number of nonisomorphic subgraphs in an $n$-point graph
%J Matematičeskie zametki
%D 1971
%P 263-273
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a4/
%G ru
%F MZM_1971_9_3_a4
A. D. Korshunov. Number of nonisomorphic subgraphs in an $n$-point graph. Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 263-273. http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a4/