Number of nonisomorphic subgraphs in an $n$-point graph
Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 263-273
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mathfrak{G}(n)$ be the set of all nonoriented graphs with $n$ enumerated points without loops or multiple lines, and let $\nu_k(G)$ be the number of mutually nonisomorphic $k$-point subgraphs of $G\in\mathfrak{G}(n)$. It is proved that at least $|\mathfrak{G}(n)|(1-1/n)$ graphs $G\in\mathfrak{G}(n)$ possess the following properties: a) for any $k\in[6\log_2n, cn+5\log_2n]$, where $c=-c\log_2c-(1-c)\times\log_2(1-c)$ and $c>1/2$, we have $\nu_k(G)>C_n^k(1-1/n^2)$; b) for any $k\in[cn+5\log_2n, n]$ we have $\nu_k(G)=C_n^k$. Hence “almost all” graphs $G\in\mathfrak{G}(n)$ contain $\nu(G)\sim2^n$ pairwise nonisomorphic subgraphs.
@article{MZM_1971_9_3_a4,
author = {A. D. Korshunov},
title = {Number of nonisomorphic subgraphs in an $n$-point graph},
journal = {Matemati\v{c}eskie zametki},
pages = {263--273},
year = {1971},
volume = {9},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a4/}
}
A. D. Korshunov. Number of nonisomorphic subgraphs in an $n$-point graph. Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 263-273. http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a4/