Complexity of the realization of a linear function in the class of $\Pi$-circuits
Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 35-40
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the linear function $g_n(x_1,\dots,x_n)=x_1+\dots+x_n\mod2$ is realized in the class of $\Pi$-circuits with complexity $L_\pi(g_n)\geqslant n^2$. Combination of this result with S. V. Yablonskii's upper bound yields $L_\pi(g_n)\genfrac{}{}{0pt}{}{\smile}{\frown} n^2$.
@article{MZM_1971_9_1_a4,
author = {V. M. Khrapchenko},
title = {Complexity of the realization of a linear function in the class of $\Pi$-circuits},
journal = {Matemati\v{c}eskie zametki},
pages = {35--40},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a4/}
}
V. M. Khrapchenko. Complexity of the realization of a linear function in the class of $\Pi$-circuits. Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 35-40. http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a4/