Simplexes of $L$-subdivisions of Euclidean spaces
Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 659-670.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that necessary and sufficient conditions for a basic simplex of a point lattice in $E^n$ space to be an $L$-simplex are equivalent to conditions imposed on the coefficients $a_{ij}$ of the form $\sum_{i,j=1}^na_{ij}x_ix_j-\sum_{i=1}^na_{ii}x_i$, namely, that it should assume positive values for all possible integer values of the variables $x_1,\dots,x_n$ (excluding the obvious $n+1$ cases when the form is equal to 0). These conditions are obtained for $n\leqslant5$.
@article{MZM_1971_10_6_a7,
     author = {E. P. Baranovskii},
     title = {Simplexes of $L$-subdivisions of {Euclidean} spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {659--670},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a7/}
}
TY  - JOUR
AU  - E. P. Baranovskii
TI  - Simplexes of $L$-subdivisions of Euclidean spaces
JO  - Matematičeskie zametki
PY  - 1971
SP  - 659
EP  - 670
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a7/
LA  - ru
ID  - MZM_1971_10_6_a7
ER  - 
%0 Journal Article
%A E. P. Baranovskii
%T Simplexes of $L$-subdivisions of Euclidean spaces
%J Matematičeskie zametki
%D 1971
%P 659-670
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a7/
%G ru
%F MZM_1971_10_6_a7
E. P. Baranovskii. Simplexes of $L$-subdivisions of Euclidean spaces. Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 659-670. http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a7/