Simplexes of $L$-subdivisions of Euclidean spaces
Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 659-670
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that necessary and sufficient conditions for a basic simplex of a point lattice in $E^n$ space to be an $L$-simplex are equivalent to conditions imposed on the coefficients $a_{ij}$ of the form $\sum_{i,j=1}^na_{ij}x_ix_j-\sum_{i=1}^na_{ii}x_i$, namely, that it should assume positive values for all possible integer values of the variables $x_1,\dots,x_n$ (excluding the obvious $n+1$ cases when the form is equal to 0). These conditions are obtained for $n\leqslant5$.
@article{MZM_1971_10_6_a7,
author = {E. P. Baranovskii},
title = {Simplexes of $L$-subdivisions of {Euclidean} spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {659--670},
year = {1971},
volume = {10},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a7/}
}
E. P. Baranovskii. Simplexes of $L$-subdivisions of Euclidean spaces. Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 659-670. http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a7/