Infinitely small bending slipping of component surfaces of revolution
Matematičeskie zametki, Tome 10 (1971) no. 5, pp. 549-554
Voir la notice de l'article provenant de la source Math-Net.Ru
Necessary and sufficient conditions are found such that the internally coalesced surface $\Sigma=S_1+S_2$ should have a parallel $L\in S_2$ which divides the surface $\Sigma$ into two parts so that the part $\Sigma_L$, which does not contain a pole of the surface $S_2$, should permit nontrivial bending slipping along $L$.
@article{MZM_1971_10_5_a9,
author = {I. Ivanova-Karatopraklieva},
title = {Infinitely small bending slipping of component surfaces of revolution},
journal = {Matemati\v{c}eskie zametki},
pages = {549--554},
publisher = {mathdoc},
volume = {10},
number = {5},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a9/}
}
I. Ivanova-Karatopraklieva. Infinitely small bending slipping of component surfaces of revolution. Matematičeskie zametki, Tome 10 (1971) no. 5, pp. 549-554. http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a9/