Infinitely small bending slipping of component surfaces of revolution
Matematičeskie zametki, Tome 10 (1971) no. 5, pp. 549-554.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions are found such that the internally coalesced surface $\Sigma=S_1+S_2$ should have a parallel $L\in S_2$ which divides the surface $\Sigma$ into two parts so that the part $\Sigma_L$, which does not contain a pole of the surface $S_2$, should permit nontrivial bending slipping along $L$.
@article{MZM_1971_10_5_a9,
     author = {I. Ivanova-Karatopraklieva},
     title = {Infinitely small bending slipping of component surfaces of revolution},
     journal = {Matemati\v{c}eskie zametki},
     pages = {549--554},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a9/}
}
TY  - JOUR
AU  - I. Ivanova-Karatopraklieva
TI  - Infinitely small bending slipping of component surfaces of revolution
JO  - Matematičeskie zametki
PY  - 1971
SP  - 549
EP  - 554
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a9/
LA  - ru
ID  - MZM_1971_10_5_a9
ER  - 
%0 Journal Article
%A I. Ivanova-Karatopraklieva
%T Infinitely small bending slipping of component surfaces of revolution
%J Matematičeskie zametki
%D 1971
%P 549-554
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a9/
%G ru
%F MZM_1971_10_5_a9
I. Ivanova-Karatopraklieva. Infinitely small bending slipping of component surfaces of revolution. Matematičeskie zametki, Tome 10 (1971) no. 5, pp. 549-554. http://geodesic.mathdoc.fr/item/MZM_1971_10_5_a9/