Orthogonal bases for $L^p$ spaces
Matematičeskie zametki, Tome 10 (1971) no. 4, pp. 375-385
Cet article a éte moissonné depuis la source Math-Net.Ru
The spectrum of a system of functions which are orthogonal on $[0, 1]$ is the set of all $p\in[1,\infty]$ such that the system forms a basis in $L^p[0, 1]$ ($L^\infty=C$). A set $E$ is called a \underbar{spectral set} if there exists a system of functions orthonormal on $[0, 1]$ whose spectrum is $E$. In this note we determine all spectral sets and construct an orthonormal system corresponding to each of them.
@article{MZM_1971_10_4_a1,
author = {S. F. Gerasimov},
title = {Orthogonal bases for $L^p$ spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {375--385},
year = {1971},
volume = {10},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a1/}
}
S. F. Gerasimov. Orthogonal bases for $L^p$ spaces. Matematičeskie zametki, Tome 10 (1971) no. 4, pp. 375-385. http://geodesic.mathdoc.fr/item/MZM_1971_10_4_a1/