Some continuous decompositions of the space $E^n$
Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 315-326
Cet article a éte moissonné depuis la source Math-Net.Ru
The main result proved is the following. Let $E_f^{(n)}$ ($n>1$) be a continuous decomposition of $E^{(n)}$ into points and zero-dimensional compact sets $\xi_\lambda$. If $P^*=\bigcup\limits_\lambda\xi_\lambda$ is compact and $\mathrm{dim}\,f(P^*)=0$, then the space $f(E^n)$ can be imbedded in $E^{(n+1)}$.
@article{MZM_1971_10_3_a9,
author = {Van Ny Kyong},
title = {Some continuous decompositions of the space~$E^n$},
journal = {Matemati\v{c}eskie zametki},
pages = {315--326},
year = {1971},
volume = {10},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a9/}
}
Van Ny Kyong. Some continuous decompositions of the space $E^n$. Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 315-326. http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a9/