Some continuous decompositions of the space~$E^n$
Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 315-326.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result proved is the following. Let $E_f^{(n)}$ ($n>1$) be a continuous decomposition of $E^{(n)}$ into points and zero-dimensional compact sets $\xi_\lambda$. If $P^*=\bigcup\limits_\lambda\xi_\lambda$ is compact and $\mathrm{dim}\,f(P^*)=0$, then the space $f(E^n)$ can be imbedded in $E^{(n+1)}$.
@article{MZM_1971_10_3_a9,
     author = {Van Ny Kyong},
     title = {Some continuous decompositions of the space~$E^n$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {315--326},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a9/}
}
TY  - JOUR
AU  - Van Ny Kyong
TI  - Some continuous decompositions of the space~$E^n$
JO  - Matematičeskie zametki
PY  - 1971
SP  - 315
EP  - 326
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a9/
LA  - ru
ID  - MZM_1971_10_3_a9
ER  - 
%0 Journal Article
%A Van Ny Kyong
%T Some continuous decompositions of the space~$E^n$
%J Matematičeskie zametki
%D 1971
%P 315-326
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a9/
%G ru
%F MZM_1971_10_3_a9
Van Ny Kyong. Some continuous decompositions of the space~$E^n$. Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 315-326. http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a9/