Lucas's criterion for the primality of numbers of the form $N=h2^n-1$
Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 259-268
Voir la notice de l'article provenant de la source Math-Net.Ru
The following theorem is proved. Let $N=h2^n-1$, where $n\geqslant2$, $h$ is odd,
$1\leqslant h2^n$, and suppose that $v$ is a positive integer, $v\geqslant3$,
$\alpha$ is a root of the equation
$$
(v^2-4, N)=1,\qquad \left(\frac{v-2}N\right)=1, \qquad \left(\frac{v+2}N\right)=-1.
$$
Then for $N$ to be prime, it is necessary and sufficient that
$$
S_{n-2}\equiv\pmod{N}, \text{ where }S_{k+1}=S_k^2-2\quad(k=0,1,\dots),\quad S_0=\alpha^h+\alpha^{-h}.
$$
For given $N$, an algorithm is described for the construction of the smallest $v$ satisfying the conditions of this theorem.
@article{MZM_1971_10_3_a2,
author = {S. B. Stechkin},
title = {Lucas's criterion for the primality of numbers of the form $N=h2^n-1$},
journal = {Matemati\v{c}eskie zametki},
pages = {259--268},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a2/}
}
S. B. Stechkin. Lucas's criterion for the primality of numbers of the form $N=h2^n-1$. Matematičeskie zametki, Tome 10 (1971) no. 3, pp. 259-268. http://geodesic.mathdoc.fr/item/MZM_1971_10_3_a2/