A differential equation without a solution
Matematičeskie zametki, Tome 10 (1971) no. 2, pp. 125-128
Voir la notice de l'article provenant de la source Math-Net.Ru
A direct construction is given of a function $f(x_1, x_2)\in C^\infty$, such that the equation
$$
\frac{\partial u}{\partial x_1}+ix_1^{2k-1}\frac{\partial u}{\partial x_2}=f
$$
has no solution in any neighborhood of the origin; the function $f$ and all
its derivatives vanish for $x_1=0$.
@article{MZM_1971_10_2_a0,
author = {V. V. Grushin},
title = {A differential equation without a solution},
journal = {Matemati\v{c}eskie zametki},
pages = {125--128},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_2_a0/}
}
V. V. Grushin. A differential equation without a solution. Matematičeskie zametki, Tome 10 (1971) no. 2, pp. 125-128. http://geodesic.mathdoc.fr/item/MZM_1971_10_2_a0/