Application of the large sieve to the solution of additive problems of mixed type
Matematičeskie zametki, Tome 10 (1971) no. 1, pp. 73-81
Voir la notice de l'article provenant de la source Math-Net.Ru
A variant of the large-sieve: method, using a combination of results obtained by Lavrik, Montgomery, and Eombieri, is employed to derive asymptotic properties of the number of solutions of the equation $N\mathfrak p+N\mathfrak a=n$ where $\mathfrak p$ is a prime ideal of some ideal class of a field $K$ of degree $n\le4$, and $\mathfrak a$ is a prime ideal of a class of an imaginary quadratic field.
@article{MZM_1971_10_1_a10,
author = {L. F. Kondakova},
title = {Application of the large sieve to the solution of additive problems of mixed type},
journal = {Matemati\v{c}eskie zametki},
pages = {73--81},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a10/}
}
L. F. Kondakova. Application of the large sieve to the solution of additive problems of mixed type. Matematičeskie zametki, Tome 10 (1971) no. 1, pp. 73-81. http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a10/