Best approximations by rational functions
Matematičeskie zametki, Tome 10 (1971) no. 1, pp. 11-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Description of a general class of real continuous functions on a segment $\Delta$ of the real line for which a best rational approximation with complex coefficients is not unique.
@article{MZM_1971_10_1_a1,
     author = {K. N. Lungu},
     title = {Best approximations by rational functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {11--15},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a1/}
}
TY  - JOUR
AU  - K. N. Lungu
TI  - Best approximations by rational functions
JO  - Matematičeskie zametki
PY  - 1971
SP  - 11
EP  - 15
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a1/
LA  - ru
ID  - MZM_1971_10_1_a1
ER  - 
%0 Journal Article
%A K. N. Lungu
%T Best approximations by rational functions
%J Matematičeskie zametki
%D 1971
%P 11-15
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a1/
%G ru
%F MZM_1971_10_1_a1
K. N. Lungu. Best approximations by rational functions. Matematičeskie zametki, Tome 10 (1971) no. 1, pp. 11-15. http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a1/