Best approximations by rational functions
Matematičeskie zametki, Tome 10 (1971) no. 1, pp. 11-15
Voir la notice de l'article provenant de la source Math-Net.Ru
Description of a general class of real continuous functions on a segment $\Delta$ of the real line for which a best rational approximation with complex coefficients is not unique.
@article{MZM_1971_10_1_a1,
author = {K. N. Lungu},
title = {Best approximations by rational functions},
journal = {Matemati\v{c}eskie zametki},
pages = {11--15},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a1/}
}
K. N. Lungu. Best approximations by rational functions. Matematičeskie zametki, Tome 10 (1971) no. 1, pp. 11-15. http://geodesic.mathdoc.fr/item/MZM_1971_10_1_a1/