Some estimates of solutions of degenerate $(k,0)$-elliptic equations
Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 625-634.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of nonlinear second-order equations of divergent form is distinguished, whose solutions have properties recalling the properties of solutions of ordinary elliptic equations. In the linear case these are equations of the form $$ \sum_{j=1}^k\lambda_j(x)A_j^2u+\sum_{j=1}^k\mu_j(x)A_ju+c(x)u+f(x)=0 $$ where the $A_j=\sum_{\alpha=1}^na_j^\alpha(x)\frac\partial{\partial x^\alpha}$ ($1\le j\le k$) are linearly independent first-order differential operators whose Lie algebra is of rank $n$, $2\le k\le n$, $\lambda_j(x)\ge0$ are functions which can become zero or increase in a definite way. Harnack's inequality is proved for nonnegative solutions of these equations.
@article{MZM_1970_8_5_a9,
     author = {L. P. Kuptsov},
     title = {Some estimates of solutions of degenerate $(k,0)$-elliptic equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {625--634},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a9/}
}
TY  - JOUR
AU  - L. P. Kuptsov
TI  - Some estimates of solutions of degenerate $(k,0)$-elliptic equations
JO  - Matematičeskie zametki
PY  - 1970
SP  - 625
EP  - 634
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a9/
LA  - ru
ID  - MZM_1970_8_5_a9
ER  - 
%0 Journal Article
%A L. P. Kuptsov
%T Some estimates of solutions of degenerate $(k,0)$-elliptic equations
%J Matematičeskie zametki
%D 1970
%P 625-634
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a9/
%G ru
%F MZM_1970_8_5_a9
L. P. Kuptsov. Some estimates of solutions of degenerate $(k,0)$-elliptic equations. Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 625-634. http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a9/