Some estimates of solutions of degenerate $(k,0)$-elliptic equations
Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 625-634
Voir la notice de l'article provenant de la source Math-Net.Ru
A class of nonlinear second-order equations of divergent form is distinguished, whose solutions have properties recalling the properties of solutions of ordinary elliptic equations. In the linear case these are equations of the form
$$
\sum_{j=1}^k\lambda_j(x)A_j^2u+\sum_{j=1}^k\mu_j(x)A_ju+c(x)u+f(x)=0
$$
where the $A_j=\sum_{\alpha=1}^na_j^\alpha(x)\frac\partial{\partial x^\alpha}$ ($1\le j\le k$) are linearly independent first-order differential operators whose Lie algebra is of rank $n$, $2\le k\le n$, $\lambda_j(x)\ge0$ are functions which can become zero or increase in a definite way. Harnack's inequality is proved for nonnegative solutions of these equations.
@article{MZM_1970_8_5_a9,
author = {L. P. Kuptsov},
title = {Some estimates of solutions of degenerate $(k,0)$-elliptic equations},
journal = {Matemati\v{c}eskie zametki},
pages = {625--634},
publisher = {mathdoc},
volume = {8},
number = {5},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a9/}
}
L. P. Kuptsov. Some estimates of solutions of degenerate $(k,0)$-elliptic equations. Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 625-634. http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a9/