Best approximations of functionals on certain sets
Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 551-562 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

S. B. Stechkin's problem concerning the best approximation of an operator $U$ by bounded linear operators is investigated for the case in which $U$ is a functional. An upper bound is found for the discrepancy of the best approximation and properties of best approximating functionals are investigated. The results are used to study certain functionals related to the problem of finding the best approximation $E_N$ of the differentiation operator in $C(S)$, and the value of $E_N$ is calculated for all cases in which the exact value of the constant in the corresponding Kolmogorov inequality is known.
@article{MZM_1970_8_5_a2,
     author = {V. N. Gabushin},
     title = {Best approximations of functionals on certain sets},
     journal = {Matemati\v{c}eskie zametki},
     pages = {551--562},
     year = {1970},
     volume = {8},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a2/}
}
TY  - JOUR
AU  - V. N. Gabushin
TI  - Best approximations of functionals on certain sets
JO  - Matematičeskie zametki
PY  - 1970
SP  - 551
EP  - 562
VL  - 8
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a2/
LA  - ru
ID  - MZM_1970_8_5_a2
ER  - 
%0 Journal Article
%A V. N. Gabushin
%T Best approximations of functionals on certain sets
%J Matematičeskie zametki
%D 1970
%P 551-562
%V 8
%N 5
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a2/
%G ru
%F MZM_1970_8_5_a2
V. N. Gabushin. Best approximations of functionals on certain sets. Matematičeskie zametki, Tome 8 (1970) no. 5, pp. 551-562. http://geodesic.mathdoc.fr/item/MZM_1970_8_5_a2/