Torsion-free groups with factor-groups on their hypercenter which are periodic
Matematičeskie zametki, Tome 8 (1970) no. 3, pp. 373-383
Voir la notice de l'article provenant de la source Math-Net.Ru
Assume that $G$ is a torsion-free group, $Z_k(G)$ is the $k$-th term of the upper central
series of $G$, and $\overline{G}_k=G/Z_k(G)$ is a nontrivial periodic group.
Then every finite subgroup of $\overline{G}_k$ is nilpotent of class not higher than $k$;
the group $k\geqslant2$ contains an infinite subgroup with $k$ generators if $\overline{G}_k$
and two generators if $k=1$. Moreover any nontrivial invariant subgroup of $\overline{G}_k$ is infinite.
All elements of $\overline{G}_k$ are of odd order. This assertion is generalized.
@article{MZM_1970_8_3_a9,
author = {V. M. Kotlov},
title = {Torsion-free groups with factor-groups on their hypercenter which are periodic},
journal = {Matemati\v{c}eskie zametki},
pages = {373--383},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a9/}
}
V. M. Kotlov. Torsion-free groups with factor-groups on their hypercenter which are periodic. Matematičeskie zametki, Tome 8 (1970) no. 3, pp. 373-383. http://geodesic.mathdoc.fr/item/MZM_1970_8_3_a9/