Completely linear functionals in partially ordered spaces
Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 187-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary normed space $X$ the set $(X^{**})^\pi$ in $X^{**}$ introduced. It is proved that if $X$ is a $KN$-lineal then $\overline{X}^*=(X^{**})^\pi$, where $\overline{X}^*$ is the Nakano dual to the Banach dual $X^*$. By the same token $\overline{X}^*$ is not in any way related with any partial ordering in the $KN$-lineal $X$.
@article{MZM_1970_8_2_a6,
     author = {G. Ya. Lozanovskii},
     title = {Completely linear functionals in partially ordered spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {187--195},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a6/}
}
TY  - JOUR
AU  - G. Ya. Lozanovskii
TI  - Completely linear functionals in partially ordered spaces
JO  - Matematičeskie zametki
PY  - 1970
SP  - 187
EP  - 195
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a6/
LA  - ru
ID  - MZM_1970_8_2_a6
ER  - 
%0 Journal Article
%A G. Ya. Lozanovskii
%T Completely linear functionals in partially ordered spaces
%J Matematičeskie zametki
%D 1970
%P 187-195
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a6/
%G ru
%F MZM_1970_8_2_a6
G. Ya. Lozanovskii. Completely linear functionals in partially ordered spaces. Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 187-195. http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a6/