A class of functions of a real variable
Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 149-158
Voir la notice de l'article provenant de la source Math-Net.Ru
An investigation of measurable almost-everywhere finite functions
$\xi(t)$, $-\infty$, for which
$$
\varphi_T^\xi(\tau_{(n)},\lambda_{(n)})=\frac1{2T}\int_{-T}^T\exp{i}\sum_{k=1}^n\lambda_k\xi(t-\tau_k)dt
$$
tends to an asymptotic characteristic function $\varphi_\infty^\xi(\tau_{(n)},\lambda_{(n)})$
when $T\to\infty$. Here $n$ is any positive integer and $\tau_{(n)}=(\tau_1,\tau_2,\dots,\tau_n)$ is arbitrary.
It is proved that the class of such functions $\xi(t)$ is larger than the class of Besicovich almost-periodic functions.
@article{MZM_1970_8_2_a2,
author = {Yu. I. Alimov},
title = {A class of functions of a real variable},
journal = {Matemati\v{c}eskie zametki},
pages = {149--158},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a2/}
}
Yu. I. Alimov. A class of functions of a real variable. Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 149-158. http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a2/