A class of functions of a real variable
Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 149-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

An investigation of measurable almost-everywhere finite functions $\xi(t)$, $-\infty$, for which $$ \varphi_T^\xi(\tau_{(n)},\lambda_{(n)})=\frac1{2T}\int_{-T}^T\exp{i}\sum_{k=1}^n\lambda_k\xi(t-\tau_k)dt $$ tends to an asymptotic characteristic function $\varphi_\infty^\xi(\tau_{(n)},\lambda_{(n)})$ when $T\to\infty$. Here $n$ is any positive integer and $\tau_{(n)}=(\tau_1,\tau_2,\dots,\tau_n)$ is arbitrary. It is proved that the class of such functions $\xi(t)$ is larger than the class of Besicovich almost-periodic functions.
@article{MZM_1970_8_2_a2,
     author = {Yu. I. Alimov},
     title = {A class of functions of a real variable},
     journal = {Matemati\v{c}eskie zametki},
     pages = {149--158},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a2/}
}
TY  - JOUR
AU  - Yu. I. Alimov
TI  - A class of functions of a real variable
JO  - Matematičeskie zametki
PY  - 1970
SP  - 149
EP  - 158
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a2/
LA  - ru
ID  - MZM_1970_8_2_a2
ER  - 
%0 Journal Article
%A Yu. I. Alimov
%T A class of functions of a real variable
%J Matematičeskie zametki
%D 1970
%P 149-158
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a2/
%G ru
%F MZM_1970_8_2_a2
Yu. I. Alimov. A class of functions of a real variable. Matematičeskie zametki, Tome 8 (1970) no. 2, pp. 149-158. http://geodesic.mathdoc.fr/item/MZM_1970_8_2_a2/