Exact functions on manifolds
Matematičeskie zametki, Tome 8 (1970) no. 1, pp. 77-83
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the property of a manifold $M^n$ possessing a smooth function with given numbers of critical points of each index is homotopic invariant if $Wh(\pi_1(M^n))=0$ and every $Z(\pi_1(M^n))$-stable free module is free.
@article{MZM_1970_8_1_a8,
author = {O. I. Bogoyavlenskii},
title = {Exact functions on manifolds},
journal = {Matemati\v{c}eskie zametki},
pages = {77--83},
year = {1970},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_1_a8/}
}
O. I. Bogoyavlenskii. Exact functions on manifolds. Matematičeskie zametki, Tome 8 (1970) no. 1, pp. 77-83. http://geodesic.mathdoc.fr/item/MZM_1970_8_1_a8/