Exact functions on manifolds
Matematičeskie zametki, Tome 8 (1970) no. 1, pp. 77-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the property of a manifold $M^n$ possessing a smooth function with given numbers of critical points of each index is homotopic invariant if $Wh(\pi_1(M^n))=0$ and every $Z(\pi_1(M^n))$-stable free module is free.
@article{MZM_1970_8_1_a8,
     author = {O. I. Bogoyavlenskii},
     title = {Exact functions on manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {77--83},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_1_a8/}
}
TY  - JOUR
AU  - O. I. Bogoyavlenskii
TI  - Exact functions on manifolds
JO  - Matematičeskie zametki
PY  - 1970
SP  - 77
EP  - 83
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_8_1_a8/
LA  - ru
ID  - MZM_1970_8_1_a8
ER  - 
%0 Journal Article
%A O. I. Bogoyavlenskii
%T Exact functions on manifolds
%J Matematičeskie zametki
%D 1970
%P 77-83
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_8_1_a8/
%G ru
%F MZM_1970_8_1_a8
O. I. Bogoyavlenskii. Exact functions on manifolds. Matematičeskie zametki, Tome 8 (1970) no. 1, pp. 77-83. http://geodesic.mathdoc.fr/item/MZM_1970_8_1_a8/