Best approximations of continuous functions by spline functions
Matematičeskie zametki, Tome 8 (1970) no. 1, pp. 41-46
Voir la notice de l'article provenant de la source Math-Net.Ru
An investigation of the approximation on $[0, 1]$ of functions $f(x)$ by spline functions $s(f,\varphi;x)$ of degree $2r-1$ and of deficiency $r$ ($r>1$) depending on the vector function $\varphi=\{\varphi_1(x),\dots,\varphi_{r-1}(x)\}$ and interpolating $f(x)$ at fixed points. For the optimal choice of the vector $\varphi_0$, exact estimates are obtained of the norms $||f(x)-s(f,\varphi_0;x)||_{C[0,1]}$ and $||f(x)-s(f,\varphi_0;x)||_{L[0,1]}$ on the function classes $H_\omega$.
@article{MZM_1970_8_1_a4,
author = {V. L. Velikin},
title = {Best approximations of continuous functions by spline functions},
journal = {Matemati\v{c}eskie zametki},
pages = {41--46},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_1_a4/}
}
V. L. Velikin. Best approximations of continuous functions by spline functions. Matematičeskie zametki, Tome 8 (1970) no. 1, pp. 41-46. http://geodesic.mathdoc.fr/item/MZM_1970_8_1_a4/