Realization of all distances in a decomposition of the space $R^n$ into $n+1$ parts
Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 319-323.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let the sets $A_1, A_2, \dots, A_{n+1}$ form a covering of the $n$-dimensional euclidean space $R^n$ ($n>1$). Then among these sets can be found a set $A_i$ containing, for every $d>0$, a pair of points such that the distance between them is equal to $d$.
@article{MZM_1970_7_3_a8,
     author = {D. E. Raiskii},
     title = {Realization of all distances in a decomposition of the space $R^n$ into $n+1$ parts},
     journal = {Matemati\v{c}eskie zametki},
     pages = {319--323},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a8/}
}
TY  - JOUR
AU  - D. E. Raiskii
TI  - Realization of all distances in a decomposition of the space $R^n$ into $n+1$ parts
JO  - Matematičeskie zametki
PY  - 1970
SP  - 319
EP  - 323
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a8/
LA  - ru
ID  - MZM_1970_7_3_a8
ER  - 
%0 Journal Article
%A D. E. Raiskii
%T Realization of all distances in a decomposition of the space $R^n$ into $n+1$ parts
%J Matematičeskie zametki
%D 1970
%P 319-323
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a8/
%G ru
%F MZM_1970_7_3_a8
D. E. Raiskii. Realization of all distances in a decomposition of the space $R^n$ into $n+1$ parts. Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 319-323. http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a8/