Realization of all distances in a decomposition of the space $R^n$ into $n+1$ parts
Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 319-323
Voir la notice de l'article provenant de la source Math-Net.Ru
Let the sets $A_1, A_2, \dots, A_{n+1}$ form a covering of the $n$-dimensional euclidean space $R^n$ ($n>1$). Then among these sets can be found a set $A_i$ containing, for every $d>0$, a pair of points such that the distance between them is equal to $d$.
@article{MZM_1970_7_3_a8,
author = {D. E. Raiskii},
title = {Realization of all distances in a decomposition of the space $R^n$ into $n+1$ parts},
journal = {Matemati\v{c}eskie zametki},
pages = {319--323},
publisher = {mathdoc},
volume = {7},
number = {3},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a8/}
}
D. E. Raiskii. Realization of all distances in a decomposition of the space $R^n$ into $n+1$ parts. Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 319-323. http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a8/