Distribution of poles of rational functions of best approximation
Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 289-293
Cet article a éte moissonné depuis la source Math-Net.Ru
This article describes the construction of an entire function $E(z)$ such that for any sequence $\{\overset{*}{r}_n(z)\}$ of rational functions of best approximation to $E(z)$ on the unit disc $K$, the corresponding set of poles $\{\overset{*}{\alpha}_{nk}\}$ is everywhere dense in the complement of $K$.
@article{MZM_1970_7_3_a3,
author = {G. A. Volkov},
title = {Distribution of poles of rational functions of best approximation},
journal = {Matemati\v{c}eskie zametki},
pages = {289--293},
year = {1970},
volume = {7},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a3/}
}
G. A. Volkov. Distribution of poles of rational functions of best approximation. Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 289-293. http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a3/