Distribution of poles of rational functions of best approximation
Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 289-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article describes the construction of an entire function $E(z)$ such that for any sequence $\{\overset{*}{r}_n(z)\}$ of rational functions of best approximation to $E(z)$ on the unit disc $K$, the corresponding set of poles $\{\overset{*}{\alpha}_{nk}\}$ is everywhere dense in the complement of $K$.
@article{MZM_1970_7_3_a3,
     author = {G. A. Volkov},
     title = {Distribution of poles of rational functions of best approximation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {289--293},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a3/}
}
TY  - JOUR
AU  - G. A. Volkov
TI  - Distribution of poles of rational functions of best approximation
JO  - Matematičeskie zametki
PY  - 1970
SP  - 289
EP  - 293
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a3/
LA  - ru
ID  - MZM_1970_7_3_a3
ER  - 
%0 Journal Article
%A G. A. Volkov
%T Distribution of poles of rational functions of best approximation
%J Matematičeskie zametki
%D 1970
%P 289-293
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a3/
%G ru
%F MZM_1970_7_3_a3
G. A. Volkov. Distribution of poles of rational functions of best approximation. Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 289-293. http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a3/