Rings over which every module has a maximal submodule
Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 359-367.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Bass's hypothesis on perfect rings. For commutative rings the question is answered positively, which gives a new characterization of commutative perfect rings. An example is constructed which shows that in general the hypothesis is not true.
@article{MZM_1970_7_3_a13,
     author = {L. A. Koifman},
     title = {Rings over which every module has a maximal submodule},
     journal = {Matemati\v{c}eskie zametki},
     pages = {359--367},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a13/}
}
TY  - JOUR
AU  - L. A. Koifman
TI  - Rings over which every module has a maximal submodule
JO  - Matematičeskie zametki
PY  - 1970
SP  - 359
EP  - 367
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a13/
LA  - ru
ID  - MZM_1970_7_3_a13
ER  - 
%0 Journal Article
%A L. A. Koifman
%T Rings over which every module has a maximal submodule
%J Matematičeskie zametki
%D 1970
%P 359-367
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a13/
%G ru
%F MZM_1970_7_3_a13
L. A. Koifman. Rings over which every module has a maximal submodule. Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 359-367. http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a13/