Diameter of class $W^rL$ in $L(0,2\pi)$ and spline function approximation
Matematičeskie zametki, Tome 7 (1970) no. 1, pp. 43-52
Voir la notice de l'article provenant de la source Math-Net.Ru
The $(2n-1)$-dimensional diameter of the class $W^rL$ is found in the metric of the space $L(0,2\pi)$. The rate of convergence is also studied of the interpolating spline functions $S_r(x,h)$ with equidistant nodes to a function $F(x)$ which has a uniformly continuous $k$-th derivative $(r\ge k\ge0)$ on the entire axis.
@article{MZM_1970_7_1_a4,
author = {Yu. N. Subbotin},
title = {Diameter of class $W^rL$ in $L(0,2\pi)$ and spline function approximation},
journal = {Matemati\v{c}eskie zametki},
pages = {43--52},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a4/}
}
Yu. N. Subbotin. Diameter of class $W^rL$ in $L(0,2\pi)$ and spline function approximation. Matematičeskie zametki, Tome 7 (1970) no. 1, pp. 43-52. http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a4/