Diameter of class $W^rL$ in $L(0,2\pi)$ and spline function approximation
Matematičeskie zametki, Tome 7 (1970) no. 1, pp. 43-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $(2n-1)$-dimensional diameter of the class $W^rL$ is found in the metric of the space $L(0,2\pi)$. The rate of convergence is also studied of the interpolating spline functions $S_r(x,h)$ with equidistant nodes to a function $F(x)$ which has a uniformly continuous $k$-th derivative $(r\ge k\ge0)$ on the entire axis.
@article{MZM_1970_7_1_a4,
     author = {Yu. N. Subbotin},
     title = {Diameter of class $W^rL$ in $L(0,2\pi)$ and spline function approximation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {43--52},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a4/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
TI  - Diameter of class $W^rL$ in $L(0,2\pi)$ and spline function approximation
JO  - Matematičeskie zametki
PY  - 1970
SP  - 43
EP  - 52
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a4/
LA  - ru
ID  - MZM_1970_7_1_a4
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%T Diameter of class $W^rL$ in $L(0,2\pi)$ and spline function approximation
%J Matematičeskie zametki
%D 1970
%P 43-52
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a4/
%G ru
%F MZM_1970_7_1_a4
Yu. N. Subbotin. Diameter of class $W^rL$ in $L(0,2\pi)$ and spline function approximation. Matematičeskie zametki, Tome 7 (1970) no. 1, pp. 43-52. http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a4/