Order of the best spline approximations of some classes of functions
Matematičeskie zametki, Tome 7 (1970) no. 1, pp. 31-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The rate of decrease of the upper bounds of the best spline approximations $E_{m,n}(f)_p$ with undetermined $n$ nodes in the metric of the space $L_p(0,1)$ $(1\le p\le\infty)$ is studied in a class of functions $f(x)$ for which $\|f^{(m+1)}(x)\|_{L_q(0,1)}\le1$ $(1\le q\le\infty)$ or $\mathrm{var}\{f^{(m)}(x);0,1\}\le1$ ($m=1,2,\dots$, the preceding derivative is assumed absolutely continuous). An exact order of decrease of the mentioned bounds is found as $n\to\infty$, and asymptotic formulas are obtained for $p=\infty$ and $1\le q\le\infty$ in the case of an approximation by broken lines $(m=1)$. The simultaneous approximation of the function and its derivatives by spline functions and their appropriate derivatives is also studied.
@article{MZM_1970_7_1_a3,
     author = {Yu. N. Subbotin and N. I. Chernykh},
     title = {Order of the best spline approximations of some classes of functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {31--42},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a3/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - Order of the best spline approximations of some classes of functions
JO  - Matematičeskie zametki
PY  - 1970
SP  - 31
EP  - 42
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a3/
LA  - ru
ID  - MZM_1970_7_1_a3
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A N. I. Chernykh
%T Order of the best spline approximations of some classes of functions
%J Matematičeskie zametki
%D 1970
%P 31-42
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a3/
%G ru
%F MZM_1970_7_1_a3
Yu. N. Subbotin; N. I. Chernykh. Order of the best spline approximations of some classes of functions. Matematičeskie zametki, Tome 7 (1970) no. 1, pp. 31-42. http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a3/