The problem of conformal transformations of a~circle into nonoverlapping regions
Matematičeskie zametki, Tome 6 (1969) no. 4, pp. 417-424.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $a$, $a\ne0$, $a\ne\infty$, be a fixed point in the $z$-plane, $\mathfrak M (a,0,\infty)$, the class of all systems $\{f_k(\zeta)\}_1^3$ of functions $z=f_k(\zeta)$, $k=1,2,3$, of which the first two map conformally and in a single-sheeted manner the circle $|\zeta|1$, and the third maps in a similar manner the region $|\zeta|>1$, into pair-wise nonintersecting regions $B_k$, $k=1,2,3$, containing the points $a,0$, and $\infty$, respectively, so that $f_1(0)=a$, $f_2(0)=0$ and $f_3(\infty)=\infty$. The region of values $\mathscr E(a,0,\infty)$ of the system $M(|f_1'(0)|,|f_2'(0)|,1/|f_3'(0)|)$ in the class $\mathfrak M(a,0,\infty)$ is determined.
@article{MZM_1969_6_4_a6,
     author = {L. Kh. Burshtein},
     title = {The problem of conformal transformations of a~circle into nonoverlapping regions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {417--424},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_4_a6/}
}
TY  - JOUR
AU  - L. Kh. Burshtein
TI  - The problem of conformal transformations of a~circle into nonoverlapping regions
JO  - Matematičeskie zametki
PY  - 1969
SP  - 417
EP  - 424
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_4_a6/
LA  - ru
ID  - MZM_1969_6_4_a6
ER  - 
%0 Journal Article
%A L. Kh. Burshtein
%T The problem of conformal transformations of a~circle into nonoverlapping regions
%J Matematičeskie zametki
%D 1969
%P 417-424
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_4_a6/
%G ru
%F MZM_1969_6_4_a6
L. Kh. Burshtein. The problem of conformal transformations of a~circle into nonoverlapping regions. Matematičeskie zametki, Tome 6 (1969) no. 4, pp. 417-424. http://geodesic.mathdoc.fr/item/MZM_1969_6_4_a6/