On group rings of abelian $p$-groups of any cardinality
Matematičeskie zametki, Tome 6 (1969) no. 4, pp. 381-392
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem is studied of the connection between an Abelian $p$-group $G$ of arbitrary cardinality and its group ring $LG$, where $L$ is a ring with unity nonzero characteristic $n\equiv0(\mod p)$, with $p$ being a prime. In particular, it is shown that group ring $LG$ defines to within isomorphism the basis subgroup of group $G$. If reduced Abelian $p$-group $G$ has finite type and if its Ulm factors decompose into direct products of cyclic groups, then group ring $LG$ determines group $G$ to within isomorphism.
@article{MZM_1969_6_4_a2,
author = {S. D. Berman and T. Zh. Mollov},
title = {On group rings of abelian $p$-groups of any cardinality},
journal = {Matemati\v{c}eskie zametki},
pages = {381--392},
year = {1969},
volume = {6},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_4_a2/}
}
S. D. Berman; T. Zh. Mollov. On group rings of abelian $p$-groups of any cardinality. Matematičeskie zametki, Tome 6 (1969) no. 4, pp. 381-392. http://geodesic.mathdoc.fr/item/MZM_1969_6_4_a2/