On group rings of abelian $p$-groups of any cardinality
Matematičeskie zametki, Tome 6 (1969) no. 4, pp. 381-392.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem is studied of the connection between an Abelian $p$-group $G$ of arbitrary cardinality and its group ring $LG$, where $L$ is a ring with unity nonzero characteristic $n\equiv0(\mod p)$, with $p$ being a prime. In particular, it is shown that group ring $LG$ defines to within isomorphism the basis subgroup of group $G$. If reduced Abelian $p$-group $G$ has finite type and if its Ulm factors decompose into direct products of cyclic groups, then group ring $LG$ determines group $G$ to within isomorphism.
@article{MZM_1969_6_4_a2,
     author = {S. D. Berman and T. Zh. Mollov},
     title = {On group rings of abelian $p$-groups of any cardinality},
     journal = {Matemati\v{c}eskie zametki},
     pages = {381--392},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_4_a2/}
}
TY  - JOUR
AU  - S. D. Berman
AU  - T. Zh. Mollov
TI  - On group rings of abelian $p$-groups of any cardinality
JO  - Matematičeskie zametki
PY  - 1969
SP  - 381
EP  - 392
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_4_a2/
LA  - ru
ID  - MZM_1969_6_4_a2
ER  - 
%0 Journal Article
%A S. D. Berman
%A T. Zh. Mollov
%T On group rings of abelian $p$-groups of any cardinality
%J Matematičeskie zametki
%D 1969
%P 381-392
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_4_a2/
%G ru
%F MZM_1969_6_4_a2
S. D. Berman; T. Zh. Mollov. On group rings of abelian $p$-groups of any cardinality. Matematičeskie zametki, Tome 6 (1969) no. 4, pp. 381-392. http://geodesic.mathdoc.fr/item/MZM_1969_6_4_a2/