Best quadrature formulas on classes of differentiable periodic functions
Matematičeskie zametki, Tome 6 (1969) no. 4, pp. 475-481
Voir la notice de l'article provenant de la source Math-Net.Ru
A solution is given to the problem of finding the best quadrature formula among formulas of the form
$$
\int_0^{2\pi}f(x)\,dx\approx\sum_{k=0}^{m-1}\sum_{l=0}^\rho p_{k,l}f^{(l)}(x_k)
$$
which are exact in the case of a constant, for $\rho=r-1$, $r=1,2,3,\dots$ and $\rho=r-2$, $r$ even, for the classes $W^{(r)}L_qM$ of $2\pi$-periodic functions.
@article{MZM_1969_6_4_a12,
author = {N. E. Lushpai},
title = {Best quadrature formulas on classes of differentiable periodic functions},
journal = {Matemati\v{c}eskie zametki},
pages = {475--481},
publisher = {mathdoc},
volume = {6},
number = {4},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_4_a12/}
}
N. E. Lushpai. Best quadrature formulas on classes of differentiable periodic functions. Matematičeskie zametki, Tome 6 (1969) no. 4, pp. 475-481. http://geodesic.mathdoc.fr/item/MZM_1969_6_4_a12/