Self-adjoint abstract differential operators
Matematičeskie zametki, Tome 6 (1969) no. 1, pp. 65-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be an abstract separable Hilbert space. We will consider the Hilbert space $H_1$ whose elements are functions $f(x)$ with domain $H$ and we will also consider the set of self-adjoint operators $Q(x)$ in $H$ of the form $Q(x)=A+B(x)$. In this formula $A\ge E$, $B(x)\ge0$, and the operator $B(x)$ is bounded for all $x$. An operator $L_0$ is defined on the set of finite, infinitely differentiable (in the strong sense) functions $y(x)\inH_1$ according to the formula: $L_0y=-y''+Q(x)y$ $(-\infty$. It is proved that the closure of the operator $L_0$ is a self-adjoint operator in $H_1$ under the given assumptions.
@article{MZM_1969_6_1_a7,
     author = {M. M. Gekhtman},
     title = {Self-adjoint abstract differential operators},
     journal = {Matemati\v{c}eskie zametki},
     pages = {65--72},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a7/}
}
TY  - JOUR
AU  - M. M. Gekhtman
TI  - Self-adjoint abstract differential operators
JO  - Matematičeskie zametki
PY  - 1969
SP  - 65
EP  - 72
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a7/
LA  - ru
ID  - MZM_1969_6_1_a7
ER  - 
%0 Journal Article
%A M. M. Gekhtman
%T Self-adjoint abstract differential operators
%J Matematičeskie zametki
%D 1969
%P 65-72
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a7/
%G ru
%F MZM_1969_6_1_a7
M. M. Gekhtman. Self-adjoint abstract differential operators. Matematičeskie zametki, Tome 6 (1969) no. 1, pp. 65-72. http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a7/