Self-adjoint abstract differential operators
Matematičeskie zametki, Tome 6 (1969) no. 1, pp. 65-72
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $H$ be an abstract separable Hilbert space. We will consider the Hilbert space $H_1$ whose elements are functions $f(x)$ with domain $H$ and we will also consider the set of self-adjoint operators $Q(x)$ in $H$ of the form $Q(x)=A+B(x)$. In this formula $A\ge E$, $B(x)\ge0$, and the operator $B(x)$ is bounded for all $x$. An operator $L_0$ is defined on the set of finite, infinitely differentiable (in the strong sense) functions $y(x)\inH_1$ according to the formula: $L_0y=-y''+Q(x)y$ $(-\infty$. It is proved that the closure of the operator $L_0$ is a self-adjoint operator in $H_1$ under the given assumptions.
@article{MZM_1969_6_1_a7,
author = {M. M. Gekhtman},
title = {Self-adjoint abstract differential operators},
journal = {Matemati\v{c}eskie zametki},
pages = {65--72},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a7/}
}
M. M. Gekhtman. Self-adjoint abstract differential operators. Matematičeskie zametki, Tome 6 (1969) no. 1, pp. 65-72. http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a7/