On the rank of a spectral function
Matematičeskie zametki, Tome 5 (1969) no. 4, pp. 457-460.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P(x)$, $0\leqslant x\leqslant1$, be an absolutely continuous spectral function in the separable Hilbert spaces $\mathfrak{S}$. If the vectors $h_j$, $j=1,2,\dots,s$, $s\leqslant\infty$ are such that the set $P(x)h_j$ is complete in $\mathfrak{S}$, then the rank of the function $P(x)$ equals the general rank of the matrix-function $d/dx||P(x)h_i,h_j||^s_1$.
@article{MZM_1969_5_4_a8,
     author = {M. S. Brodskii},
     title = {On the rank of a spectral function},
     journal = {Matemati\v{c}eskie zametki},
     pages = {457--460},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a8/}
}
TY  - JOUR
AU  - M. S. Brodskii
TI  - On the rank of a spectral function
JO  - Matematičeskie zametki
PY  - 1969
SP  - 457
EP  - 460
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a8/
LA  - ru
ID  - MZM_1969_5_4_a8
ER  - 
%0 Journal Article
%A M. S. Brodskii
%T On the rank of a spectral function
%J Matematičeskie zametki
%D 1969
%P 457-460
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a8/
%G ru
%F MZM_1969_5_4_a8
M. S. Brodskii. On the rank of a spectral function. Matematičeskie zametki, Tome 5 (1969) no. 4, pp. 457-460. http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a8/