The absolute convergence of lacunary series
Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 205-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem is proved from which it follows that there exists a complete $U$-set $E$ and a number $p$ such that: a) if the $p$-lacunary trigonometric series $$ \sum_{k=1}^\infty a_k\sin(n_kx+\varepsilon_k), \qquad \varliminf_{k\to\infty}n_{k+1}/n_k>p, $$ converges on $E$, the series of the moduli of its coefficients converges; b) if the sum of the $p$-lacunary trigonometric series is differentiable on $E$, it is continuously differentiable everywhere.
@article{MZM_1969_5_2_a7,
     author = {V. F. Emel'yanov},
     title = {The absolute convergence of lacunary series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {205--216},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a7/}
}
TY  - JOUR
AU  - V. F. Emel'yanov
TI  - The absolute convergence of lacunary series
JO  - Matematičeskie zametki
PY  - 1969
SP  - 205
EP  - 216
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a7/
LA  - ru
ID  - MZM_1969_5_2_a7
ER  - 
%0 Journal Article
%A V. F. Emel'yanov
%T The absolute convergence of lacunary series
%J Matematičeskie zametki
%D 1969
%P 205-216
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a7/
%G ru
%F MZM_1969_5_2_a7
V. F. Emel'yanov. The absolute convergence of lacunary series. Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 205-216. http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a7/