The absolute convergence of lacunary series
Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 205-216
Voir la notice de l'article provenant de la source Math-Net.Ru
A theorem is proved from which it follows that there exists a complete $U$-set $E$ and a number $p$ such that: a) if the $p$-lacunary trigonometric series
$$
\sum_{k=1}^\infty a_k\sin(n_kx+\varepsilon_k), \qquad \varliminf_{k\to\infty}n_{k+1}/n_k>p,
$$
converges on $E$, the series of the moduli of its coefficients converges; b) if the sum of the $p$-lacunary trigonometric series is differentiable on $E$, it is continuously differentiable everywhere.
@article{MZM_1969_5_2_a7,
author = {V. F. Emel'yanov},
title = {The absolute convergence of lacunary series},
journal = {Matemati\v{c}eskie zametki},
pages = {205--216},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a7/}
}
V. F. Emel'yanov. The absolute convergence of lacunary series. Matematičeskie zametki, Tome 5 (1969) no. 2, pp. 205-216. http://geodesic.mathdoc.fr/item/MZM_1969_5_2_a7/