On the greatest length of a~dead-end disjunctive normal form for almost all Boolean functions
Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 649-658
Voir la notice de l'article provenant de la source Math-Net.Ru
The maximal number $l(f)$ of conjunctions in a dead-end disjunctive normal form (d.n.f.) of a Boolean function $f $and the number $\tau(f)$ of dead-end d.n.f. are important parameters characterizing the complexity of algorithms for finding minimal d.n.f. It is shown that for almost all Boolean functions $l(f)\sim2^{n-1}$, $\log_2\tau(f)\sim2^{n-1}\log_2n\log_2\log_2n$ ($n\to\infty$).
@article{MZM_1968_4_6_a4,
author = {A. A. Sapozhenko},
title = {On the greatest length of a~dead-end disjunctive normal form for almost all {Boolean} functions},
journal = {Matemati\v{c}eskie zametki},
pages = {649--658},
publisher = {mathdoc},
volume = {4},
number = {6},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a4/}
}
TY - JOUR AU - A. A. Sapozhenko TI - On the greatest length of a~dead-end disjunctive normal form for almost all Boolean functions JO - Matematičeskie zametki PY - 1968 SP - 649 EP - 658 VL - 4 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a4/ LA - ru ID - MZM_1968_4_6_a4 ER -
A. A. Sapozhenko. On the greatest length of a~dead-end disjunctive normal form for almost all Boolean functions. Matematičeskie zametki, Tome 4 (1968) no. 6, pp. 649-658. http://geodesic.mathdoc.fr/item/MZM_1968_4_6_a4/