Approximation of differentiable functions by partial sums of their Fourier series
Matematičeskie zametki, Tome 4 (1968) no. 3, pp. 291-300.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the classes of differentiable functions $W_\alpha^r$, $r>0$, which include the classes of functions which have derivatives $f^{(r)}$ or $\tilde{f}^{(r)}$ with moduli bounded by one, we obtain an asymptotic formula for the supremum of the difference between a function and the partial sums of its Fourier series. The remainder term in our formula is $Cn^{-r}$, in which $C$ is a constant.
@article{MZM_1968_4_3_a4,
     author = {S. A. Telyakovskii},
     title = {Approximation of differentiable functions by partial sums of their {Fourier} series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {291--300},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a4/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
TI  - Approximation of differentiable functions by partial sums of their Fourier series
JO  - Matematičeskie zametki
PY  - 1968
SP  - 291
EP  - 300
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a4/
LA  - ru
ID  - MZM_1968_4_3_a4
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%T Approximation of differentiable functions by partial sums of their Fourier series
%J Matematičeskie zametki
%D 1968
%P 291-300
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a4/
%G ru
%F MZM_1968_4_3_a4
S. A. Telyakovskii. Approximation of differentiable functions by partial sums of their Fourier series. Matematičeskie zametki, Tome 4 (1968) no. 3, pp. 291-300. http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a4/