A generalization of a theorem of M.~Riesz to the case of functions of several variables
Matematičeskie zametki, Tome 4 (1968) no. 3, pp. 269-280.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem was proved by M. Riesz: If $f(x)\in L(-\pi,\pi)$, $f(x)\geqslant0$ and the conjugate function $f(x)$ is also integrable on $[-\pi,\pi]$, then $f(x)\in L\log^+L$. The analog of this theorem for functions of several variables is established.
@article{MZM_1968_4_3_a2,
     author = {L. V. Zhizhiashvili},
     title = {A generalization of a theorem of {M.~Riesz} to the case of functions of several variables},
     journal = {Matemati\v{c}eskie zametki},
     pages = {269--280},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a2/}
}
TY  - JOUR
AU  - L. V. Zhizhiashvili
TI  - A generalization of a theorem of M.~Riesz to the case of functions of several variables
JO  - Matematičeskie zametki
PY  - 1968
SP  - 269
EP  - 280
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a2/
LA  - ru
ID  - MZM_1968_4_3_a2
ER  - 
%0 Journal Article
%A L. V. Zhizhiashvili
%T A generalization of a theorem of M.~Riesz to the case of functions of several variables
%J Matematičeskie zametki
%D 1968
%P 269-280
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a2/
%G ru
%F MZM_1968_4_3_a2
L. V. Zhizhiashvili. A generalization of a theorem of M.~Riesz to the case of functions of several variables. Matematičeskie zametki, Tome 4 (1968) no. 3, pp. 269-280. http://geodesic.mathdoc.fr/item/MZM_1968_4_3_a2/