Unconditional convergence almost everywhere of Fourier series of continuous functions in the Haar system
Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 211-220.

Voir la notice de l'article provenant de la source Math-Net.Ru

A continuous function is constructed whose Haar-Fourier series, after a definite rearrangement of its terms, diverges almost everywhere. A function is also constructed which has the maximum degree of smoothness in the sense that if its smoothness is increased its Haar-Fourier series becomes unconditionally convergent almost everywhere.
@article{MZM_1968_4_2_a12,
     author = {S. V. Bochkarev},
     title = {Unconditional convergence almost everywhere of {Fourier} series of continuous functions in the {Haar} system},
     journal = {Matemati\v{c}eskie zametki},
     pages = {211--220},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a12/}
}
TY  - JOUR
AU  - S. V. Bochkarev
TI  - Unconditional convergence almost everywhere of Fourier series of continuous functions in the Haar system
JO  - Matematičeskie zametki
PY  - 1968
SP  - 211
EP  - 220
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a12/
LA  - ru
ID  - MZM_1968_4_2_a12
ER  - 
%0 Journal Article
%A S. V. Bochkarev
%T Unconditional convergence almost everywhere of Fourier series of continuous functions in the Haar system
%J Matematičeskie zametki
%D 1968
%P 211-220
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a12/
%G ru
%F MZM_1968_4_2_a12
S. V. Bochkarev. Unconditional convergence almost everywhere of Fourier series of continuous functions in the Haar system. Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 211-220. http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a12/