The order of approximation to functions of the $Z_\alpha$. Class by means of positive linear operators
Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 201-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C_n(\varphi,\alpha)$ be the upper bound for deviations of periodic functions which form the Zygmund class $Z_\alpha$, $0\alpha2$ from a class of positive linear operators. A study is made of the conditions under which there exists a limit $\lim\limits_{n\to\infty}n^\alpha C_n(\varphi,\alpha)$. An explicit expression is given for the functions $C(\varphi,\alpha)$.
@article{MZM_1968_4_2_a11,
     author = {L. I. Bausov},
     title = {The order of approximation to functions of the $Z_\alpha$. {Class} by means of positive linear operators},
     journal = {Matemati\v{c}eskie zametki},
     pages = {201--210},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a11/}
}
TY  - JOUR
AU  - L. I. Bausov
TI  - The order of approximation to functions of the $Z_\alpha$. Class by means of positive linear operators
JO  - Matematičeskie zametki
PY  - 1968
SP  - 201
EP  - 210
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a11/
LA  - ru
ID  - MZM_1968_4_2_a11
ER  - 
%0 Journal Article
%A L. I. Bausov
%T The order of approximation to functions of the $Z_\alpha$. Class by means of positive linear operators
%J Matematičeskie zametki
%D 1968
%P 201-210
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a11/
%G ru
%F MZM_1968_4_2_a11
L. I. Bausov. The order of approximation to functions of the $Z_\alpha$. Class by means of positive linear operators. Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 201-210. http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a11/