The order of approximation to functions of the $Z_\alpha$. Class by means of positive linear operators
Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 201-210
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $C_n(\varphi,\alpha)$ be the upper bound for deviations of periodic functions which form the Zygmund class $Z_\alpha$, $0\alpha2$ from a class of positive linear operators. A study is made of the conditions under which there exists a limit $\lim\limits_{n\to\infty}n^\alpha C_n(\varphi,\alpha)$. An explicit expression is given for the functions $C(\varphi,\alpha)$.
@article{MZM_1968_4_2_a11,
author = {L. I. Bausov},
title = {The order of approximation to functions of the $Z_\alpha$. {Class} by means of positive linear operators},
journal = {Matemati\v{c}eskie zametki},
pages = {201--210},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a11/}
}
TY - JOUR AU - L. I. Bausov TI - The order of approximation to functions of the $Z_\alpha$. Class by means of positive linear operators JO - Matematičeskie zametki PY - 1968 SP - 201 EP - 210 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a11/ LA - ru ID - MZM_1968_4_2_a11 ER -
L. I. Bausov. The order of approximation to functions of the $Z_\alpha$. Class by means of positive linear operators. Matematičeskie zametki, Tome 4 (1968) no. 2, pp. 201-210. http://geodesic.mathdoc.fr/item/MZM_1968_4_2_a11/